资源类型

期刊论文 67

会议视频 2

年份

2023 4

2022 8

2021 7

2020 5

2019 7

2018 4

2017 6

2016 7

2015 2

2013 2

2012 4

2011 1

2010 2

2009 3

2008 1

2006 1

2002 1

1999 1

展开 ︾

关键词

水泥 2

耐久性 2

高性能混凝土 2

分类 1

劣化机理 1

可持续性 1

后压浆 1

回弹性 1

围岩增耦 1

地聚合物 1

基础设施 1

多功能 1

工艺 1

应力波 1

建材 1

建筑卫生陶瓷用黏土矿原料(高岭土) 1

强国战略 1

微观形貌 1

无收缩 1

展开 ︾

检索范围:

排序: 展示方式:

Study of bond strength between various grade of Ordinary Portland Cement (OPC) and Portland PozzolaneCement (PPC) mixes and different diameter of TMT bars by using pullout test

A D POFALE, S P WANJARI

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 39-45 doi: 10.1007/s11709-013-0193-y

摘要: Since last two decades, the Portland Pozzolane Cement (PPC) is extensively used in structural concrete. But, till to date, a few literature is available on bond strength of concrete using PPC mixes. There are many literatures available on bond strength of concrete mixes using Ordinary Portland Cement (OPC). Hence, a comparative study was conducted on bond strength between OPC and PPC mixes. In the present investigation, total 24 samples consisting of M20, M35 and M50 grades of concrete and 16 and 25 mm diameter of TMT bar were tested for 7 and 28 days. The pullout bond test was conducted on each specimen as per IS: 2770-1967/1997 [1] and the results were observed at 0.25 mm slip at loaded end called as critical bond stress and at maximum bond load called as maximum bond stress. It was observed that the critical bond strength of PPC mixes is 10% higher than OPC mixes. Whereas, marginal improvement was noticed in maximum bond strength of PPC mixes. Hence, based on these findings, it could be concluded that development length for PPC mixes could be reduced by 10% as compared with same grade of OPC mixes.

关键词: bond strength     Portland Pozzolane Cement (PPC) concrete     Ordinary Portland Cement (OPC) concrete     bond between concrete and steel     pullout test     development length    

Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends:

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1249-1260 doi: 10.1007/s11709-021-0770-4

摘要: This study extended blending proportion range of ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement blends, and investigated effects of proportions on setting time, workability, and strength development of OPC-CSA blend-based mixtures. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were conducted to help understand the performance of OPC-CSA blend-based mixtures. The setting time of the OPC-CSA blends was extended, and the workability was improved with increase of OPC content. Although the early-age strength decreased with increase of OPC content, the strength development was still very fast when the OPC content was lower than 60% due to the rapid formation and accumulation of ettringite. At 2 h, the OPC-CSA blend-based mortars with OPC contents of 0%, 20%, 40%, and 60% achieved the unconfined compressive strength (UCS) of 17.5, 13.9, 9.6, and 5.0 MPa, respectively. The OPC content had a negligible influence on long-term strength. At 90 d, the average UCS of the OPC-CSA blend-based mortars was 39.2 ± 1.7 MPa.

关键词: calcium sulfoaluminate cement     cement blends     hydration reaction     setting     workability     compressive strength    

Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate

Ali Reza GHANIZADEH, Morteza RAHROVAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 787-799 doi: 10.1007/s11709-019-0516-8

摘要: The recycled layer in full-depth reclamation (FDR) method is a mixture of coarse aggregates and reclaimed asphalt pavement (RAP) which is stabilized by a stabilizer agent. For design and quality control of the final product in FDR method, the unconfined compressive strength of stabilized material should be known. This paper aims to develop a mathematical model for predicting the unconfined compressive strength (UCS) of soil-RAP blend stabilized with Portland cement based on multivariate adaptive regression spline (MARS). To this end, two different aggregate materials were mixed with different percentages of RAP and then stabilized by different percentages of Portland cement. For training and testing of MARS model, total of 64 experimental UCS data were employed. Predictors or independent variables in the developed model are percentage of RAP, percentage of cement, optimum moisture content, percent passing of #200 sieve, and curing time. The results demonstrate that MARS has a great ability for prediction of the UCS in case of soil-RAP blend stabilized with Portland cement ( is more than 0.97). Sensitivity analysis of the proposed model showed that the cement, optimum moisture content, and percent passing of #200 sieve are the most influential parameters on the UCS of FDR layer.

关键词: full-depth reclamation     soil-reclaimed asphalt pavement blend     Portland cement     unconfined compressive strength     multivariate adaptive regression spline    

Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste

Feneuil BLANDINE, Karin HABERMEHI-CWIRZEN, Andrzej CWIRZEN

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 255-255 doi: 10.1007/s11709-017-0395-9

Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer

Lapyote PRASITTISOPIN, Issara SEREEWATTHANAWUT

《结构与土木工程前沿(英文)》 2018年 第12卷 第1期   页码 16-25 doi: 10.1007/s11709-016-0373-7

摘要: Geopolymer, an inorganic aluminosilicate material activated by alkaline medium solution, can perform as an inorganic adhesive. The geopolymer technology has a viability to substitute traditional concrete made of portland cement (PC) because replacing PC with fly ash leads to reduced carbon dioxide emissions from cement productions and reduced materials cost. Although fly ash geopolymer stimulates sustainability, it is slow geopolymerization reaction poses a challenge for construction technology in term of practicality. The development of increasing geopolymerization reaction rate of the geopolymer is needed. ?The purpose of this study is to evaluate seeding nucleation agents (NA) of fly ash geopolymer that can accelerate polymerization reactions such that the geopolymer can be widely used in the construction industry. Results from the present study indicate that the use of NA (i.e., Ca(OH) ) can be potentially used to increase geopolymerization reaction rate and improve performance characteristics of the fly ash geopolymer product.

关键词: fly ash     geopolymer     nucleation agent     portland cement replacement    

碱激发材料与普通硅酸盐水泥和混凝土的耐久性能比较 Review

王爱国, 郑毅, 张祖华, 刘开伟, 李燕, 石亮, 孙道胜

《工程(英文)》 2020年 第6卷 第6期   页码 695-706 doi: 10.1016/j.eng.2019.08.019

摘要:

中国是世界上普通硅酸盐水泥(OPC)生产量和使用量最大的国家,基础设施建设的快速发展对混凝土材料提出了可持续发展的要求。碱激发材料(AAM)是一种新型节能环保建筑材料,具有广泛的应用前景。本文对比总结了AAM和OPC经硫酸盐侵蚀、酸侵蚀、碳化和氯离子渗透后的耐久性能,阐述了因硅铝质原材料不同和碱激发产物不同,导致AAM耐久性能表现出巨大差异的关系,并根据硅铝质原材料的钙(Ca)含量的高低,对比分析了无钙、低钙、高钙三种体系的AAM的性能劣化机理。尽管目前不同的研究对AAM的耐久性能和长期稳定性存在一定争议,并引起了相当的关注,但总体而言,AAM较OPC表现出了更好的耐久性能。

关键词: 碱激发材料     地聚合物     耐久性能     普通硅酸盐水泥     劣化机理    

The effect of SiO

Ismael FLORES-VIVIAN, Rani G.K PRADOTO, Mohamadreza MOINI, Marina KOZHUKHOVA, Vadim POTAPOV, Konstantin SOBOLEV

《结构与土木工程前沿(英文)》 2017年 第11卷 第4期   页码 436-445 doi: 10.1007/s11709-017-0438-2

摘要: The nanoparticles of SiO were used in cement systems to modify the rheological behavior, to enhance the reactivity of supplementary cementitious materials, and also to improve the strength and durability. In this research, low-cost nano-SiO particles from natural hydrothermal solutions obtained by membrane ultrafiltration and, optionally, by cryochemical vacuum sublimation drying, were evaluated in portland cement based systems. ??The SiO -rich solutions were obtained from the wells of Mutnovsky geothermal power station (Far East of Russia). The constant nano-SiO dosage of 0.25% (as a solid material by weight of cementitious materials) was used to compare the cement systems with different nanoparticles against a reference mortar and a commercially available nano-SiO . Nanoparticles were characterized by X-Ray Diffraction (XRD), BET Surface Area, Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FTIR) spectroscopy techniques. It was demonstrated that the addition of polycarboxylate ether superplasticizer and the dispersion treatment using an ultrasound processor can be used to facilitate the distribution of nano-SiO particles in the mixing water. The effect of nano-SiO particles in portland cement mortars was investigated by evaluating the flow, heat of hydration and compressive strength development. It was demonstrated that the use of nano-SiO particles can reduce the segregation and improve strength properties.

关键词: ultrafiltration     cryochemical vacuum sublimation drying     nanoparticles     portland cement     heat of hydration     surface area     compressive strength    

Technology improvements and management innovations in construction of Xiluodu hydropower station on Jinsha River

Qixiang FAN

《工程管理前沿(英文)》 2017年 第4卷 第2期   页码 231-237 doi: 10.15302/J-FEM-2017103

摘要: Hongtao ZHOU, Hongwei WANG, Wei ZENG. [J]. Front. Eng, 2018, 5(1): 78-87.Peter REDFERN, Hua ZHONG. [J]. Front. Eng, 2017, 4(2): 193-200.Ming-zhou Liu,Cong-hu Liu,Mao-gen Ge,Yuan Zhang,Qing-hua Zhu. [J]. Front. Eng, 2016, 3(2): 144-146.Chong-guang Feng,Hao Hu,Feng Xu,Jian Yang. [J]. Front. Eng, 2015, 2(2): 178-181.Yu Zhao,Sheng-quan Wang,Ke-chao Zhu. [J]. Front. Eng, 2015, 2(1): 35-38.Ru-gui Chen,Jia-meng Chen. [J]. Front. Eng, 2014, 1(1): 52-61.An Wang. [J]. Front. Eng, 2014, 1(1): 13-17.

关键词: super-high arch dam     intelligent construction     mass concrete temperature control     structure behavior control     anti-erosion concrete     low-heat portland cement     large-discharge and high-velocity spillway tunnels     large scale underground powerhouse     green hydropower station     sustainable development     Xiluodu hydropower station    

ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of cementmortar; influence of cement fineness and water/cement ratio

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 191-201 doi: 10.1007/s11709-021-0792-y

摘要: A new insight into the interfacial transition zone (ITZ) in cement mortar specimens (CMSs) that is influenced by cement fineness is reported. The importance of cement fineness in ITZ characterizations such as morphology and thickness is elucidated by backscattered electron images and by consequences to the compressive (Fc) and flexural strength (Ff), and porosity at various water/cement ratios. The findings indicate that by increasing the cement fineness the calcium silicate hydrate formation in the ITZ is favored and that this can refine the pore structures and create a denser and more homogeneous microstructure. By increasing cement fineness by about 25% of, the ITZ thickness of CMSs was reduced by about 30% and Fc was increased by 7%–52% and Ff by 19%–40%. These findings illustrate that the influence of ITZ features on the mechanical strength of CMSs is mostly related to the cement fineness and ITZ microstructure.

关键词: cement fineness     interfacial transition zone     compressive and flexural strength    

Autogenous healing mechanism of cement-based materials

《结构与土木工程前沿(英文)》   页码 948-963 doi: 10.1007/s11709-023-0960-3

摘要: Autogenous self-healing is the innate and fundamental repair capability of cement-based materials for healing cracks. Many researchers have investigated factors that influence autogenous healing. However, systematic research on the autogenous healing mechanism of cement-based materials is lacking. The healing process mainly involves a chemical process, including further hydration of unhydrated cement and carbonation of calcium oxide and calcium hydroxide. Hence, the autogenous healing process is influenced by the material constituents of the cement composite and the ambient environment. In this study, different factors influencing the healing process of cement-based materials were investigated. Scanning electron microscopy and optical microscopy were used to examine the autogenous healing mechanism, and the maximum healing capacity was assessed. Furthermore, detailed theoretical analysis and quantitative detection of autogenous healing were conducted. This study provides a valuable reference for developing an improved healing technique for cement-based composites.

关键词: autogenous healing     cement-based materials     healing mechanism     aggregation effect    

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 19-24 doi: 10.1007/s11709-012-0145-y

摘要: The cement sand and gravel (CSG) dam is a new style of dam that owes the advantages both of the concrete faced rock-fill dam (CRFD) and roller compacted concrete (RCC) gravity dam, because of which it has attracted much attention of experts home and abroad. At present, some researches on physic-mechanical property of CSG material and work behavior of CSG dam have been done. This paper introduces the development and characteristics of CSG dam systematically, and summarizes the progress of the study on basic tests, constitutive relation of CSG material and numerical analysis of CSG dam, in addition, indicates research and application aspect of the dam.

关键词: cement sand and gravel (CSG) dam     cement sand and gravel (CSG) material     research review    

Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete

Yanhua GUAN, Ying GAO, Renjuan SUN, Moon C. WON, Zhi GE

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 338-345 doi: 10.1007/s11709-017-0411-0

摘要: The fast-track repair of deteriorated concrete pavement requires materials that can be placed, cured, and opened to the traffic in a short period. Type III cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC). In this study, the properties of Type III and CSA cement concrete, including compressive strength, coefficient of thermal expansion (CTE) and shrinkage were evaluated. The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age. CSA cement concrete had higher early-age and long term strength. The shrinkage of CSA cement concrete was lower than that of Type III cement concrete. Both CSA and Type III cement concrete had similar CTE values. Based on the laboratory results, the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement. The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and, therefore, was suitable for the rapid repair of concrete pavement.

关键词: Calcium Sulfoaluminate (CSA) cement     Type III cement     coefficient of thermal expansion (CTE)     shrinkage     rapid repair    

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 270-278 doi: 10.1007/s11709-017-0408-8

摘要: In this paper, a combined DEM-MD method is proposed to simulate the crack failure process of Hydrated Cement Paste (HCP) under a tensile force. A three-dimensional (3D) multiscale mechanical model is established using the combined Discrete Element Method (DEM)-Molecular Dynamics (MD) method in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). In the 3D model, HCP consists of discrete particles and atoms. Simulation results show that the combined DEM-MD model is computationally efficient with good accuracy in predicting tensile failures of HCP.

关键词: hydrated cement paste     multiscale     MD simulation     DEM    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-0974-y

摘要: This paper presents an investigation of the feasibility of recycling silicon carbide waste (SCW) as a source of mixture materials in the production of cement mortar. Mortars with SCW were prepared by replacing different amounts of cement with SCW, and the properties of the resulting mortars, such as the fluidity, strength and shrinkage, were studied in this work. Thermogravimetry-differential scanning calorimetry and scanning electron microscopy were employed to understand the reasons for the property changes of the mortars. The results indicate that SCW decreases the initial and 1-h fluidity of fresh mortar but improves the loss of fluidity. The mortar with SCW exhibits a lower strength at 3 d and 7 d but a higher strength at 28 d and 56 d compared to the control. The shrinkage rate of cement mortar with SCW shows an obvious decrease as the replacement ratio increases. In addition, the content of calcium hydroxide in hardened paste also shows that SCW has some impact on the hydration of the cement-SCW system. The microstructures of the hardened paste also show evidence for a later strength change of mortar containing SCW. This work provides a strategic reference for possibly applying SCW as a mixture material in the production of cement mortar.

关键词: Silicon carbide waste     Cement mortar     Fluidity     Strength     Shrinkage    

标题 作者 时间 类型 操作

Study of bond strength between various grade of Ordinary Portland Cement (OPC) and Portland PozzolaneCement (PPC) mixes and different diameter of TMT bars by using pullout test

A D POFALE, S P WANJARI

期刊论文

Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends:

期刊论文

Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate

Ali Reza GHANIZADEH, Morteza RAHROVAN

期刊论文

Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste

Feneuil BLANDINE, Karin HABERMEHI-CWIRZEN, Andrzej CWIRZEN

期刊论文

Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer

Lapyote PRASITTISOPIN, Issara SEREEWATTHANAWUT

期刊论文

碱激发材料与普通硅酸盐水泥和混凝土的耐久性能比较

王爱国, 郑毅, 张祖华, 刘开伟, 李燕, 石亮, 孙道胜

期刊论文

The effect of SiO

Ismael FLORES-VIVIAN, Rani G.K PRADOTO, Mohamadreza MOINI, Marina KOZHUKHOVA, Vadim POTAPOV, Konstantin SOBOLEV

期刊论文

Technology improvements and management innovations in construction of Xiluodu hydropower station on Jinsha River

Qixiang FAN

期刊论文

ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of cementmortar; influence of cement fineness and water/cement ratio

期刊论文

Autogenous healing mechanism of cement-based materials

期刊论文

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

期刊论文

Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete

Yanhua GUAN, Ying GAO, Renjuan SUN, Moon C. WON, Zhi GE

期刊论文

Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD

Yue HOU, Linbing WANG

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

期刊论文